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The S-matrix
• Most basic observable of QFT 
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The S-matrix
• Weakly coupled theories: direct approach, perturbative 

methods, Feynman rules
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The S-matrix

• Full non-perturbative approach: bootstrap. Determines full 
S-matrix from a set of consistent axioms. “The bootstrap”
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The CFT bootstrap
• Revided in CFT’s


• Solve crossing (linear)
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crossing equation in CFTs
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for S-matrix

• Crossing (linear) + Unitarity (non-linear)


• Impressive results since the 50s’-60s’


• Today, numerical techniques bootstrap are being re-
applied to the S-matrix
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S-matrix unitarity
• 


• 


• Sum over : sum over complete set of states;


• 


• For 2 to 2, we have 


• Where 

S†S = 1

S = 1 + iT ⟹ 2iℑTab = T†
acTcb

c

∑
|c⟩

= ∑
2−pt states

∫phase−space
+ ∑

3−pt states
∫ + …

ℑT2→2 =
∞

∑
n=2

T2→nT*n→2

ℑT(s) = (T(s + iϵ) − T(s − iϵ)/(2i) = DiscsT(s)/(2i)
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Our set-up 
• We consider the 2-to-2 scattering 

of lightest states in a gapped QFT


• Goal: construct functions that 
satisfy the following S-matrix 
axioms: unitarity, crossing and 
Mandelstam analyticity


• No such function was built in d>2 
as of today


• In 4 dimensions, given crossing, 
one property is particularly 
difficult to enforce: Elastic unitarity

11
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Elastic unitarity in 4d

Support of double disc in (s,t)-plane

Correira, Sever, Zhiboedov ‘20
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for now, 

double disc:ρ ∼

ρ ∼ disctdiscsT(s, t)

 ~ center of mass energy

 ~ momentum transfer

s
t

s



Elastic unitarity in 4d

Support of double disc in (s,t)-plane

Correira, Sever, Zhiboedov ‘20

13

elastic region



Elastic unitarity in 4d

• Consequences of elastic unitarity + crossing are profound


• Aks’ theorem: “scattering implies production in d>2”. 


• Gribov’s theorem (disprove black disk diffraction 
model)  for 


• As it seems, only one scheme was proposed in the 
literature to construct amplitudes which satisfy elastic 
unitarity + crossing, by Atkinson; [1968-1970].

As(s, t) ≠ s f(t) s → ∞

14
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Atkinson program
Recast unitarity relations as:

DiscsT2→2 =
∞

∑
n=2

T2→nT*n→2

DiscsT2→2 − |T2→2 |2

Scattering

=
∞

∑
n=3

T2→nT*n→2

Production

16
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Atkinson program

Scattering Production

Recast unitarity relations as:

output input

DiscsT2→2 =
∞

∑
n=2

T2→nT*n→2

DiscsT2→2 − |T2→2 |2

Scattering

=
∞

∑
n=3

T2→nT*n→2

Production

17



Atkinson program
• Mathematical proofs of existence of functions that satisfy crossing, unitarity, 

elastic unitarity and Mandelstam analyticity, in d=4


• Let 


• Proceeds by seeing unitarity equations as the fix point solutions of a map 

 where  + .


• He applied fix-point theorems (Leray-Schauder principle + contraction mapping 
principle), to show that the sequence  converges to a unique 
solution for some range of  and .

ρ ∼ disctdiscsT(s, t)

ρ* = Φ[ρ*] Φ[ρ] ∼∫ |ρ |2 vinel

ρn+1 = Φ[ρn]
ρ0 vinel

Nucl.Phys. B15 (1970) 331-331 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity (Ii) Charged Pions. No Subtractions 
D. Atkinson

Nucl.Phys. B13 (1969) 415-436 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity (Iii). Subtractions 
D. Atkinson

Nucl.Phys. B23 (1970) 397-412 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity. Iv. Nearly Constant Asymptotic Cross-Sections 
D. Atkinson

Nucl.Phys. B15 (1970) 331-331 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity 
D. Arkinson

+Φ[ ] ∼

spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20arkinson,%20d.


Atkinson program
• Mathematical proofs of existence of functions that satisfy crossing, unitarity, 

elastic unitarity and Mandelstam analyticity, in d=4


• Let 


• Proceeds by seeing unitarity equations as the fix point solutions of a map 

 where  + .


• He applied fix-point theorems (Leray-Schauder principle + contraction mapping 
principle), to show that the sequence  converges to a unique 
solution for some range of  and .

ρ ∼ disctdiscsT(s, t)

ρ* = Φ[ρ*] Φ[ρ] ∼∫ |ρ |2 vinel

ρn+1 = Φ[ρn]
ρ0 vinel

Nucl.Phys. B15 (1970) 331-331 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity (Ii) Charged Pions. No Subtractions 
D. Atkinson

Nucl.Phys. B13 (1969) 415-436 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity (Iii). Subtractions 
D. Atkinson

Nucl.Phys. B23 (1970) 397-412 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity. Iv. Nearly Constant Asymptotic Cross-Sections 
D. Atkinson

Nucl.Phys. B15 (1970) 331-331 
A Proof of the Existence of Functions That Satisfy Exactly Both Crossing and 
Unitarity 
D. Arkinson

+=
nn + 1 n

Φ[ ] ∼

spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20atkinson,%20d.
spires-open-journal://
spires-search://a%20arkinson,%20d.


Atkinson’s proof
• Start from the map  where  is a 

Banach space of Hölder continuous functions


• Hölder continuity : 
 

for  and 


• Define open ball  for 
some 


• If , Leray-Schauder principle
 fixed point of 


• If  is contracting, i.e. 
, then the solution 

is also unique in .

Φ : L ↦ L L

∀x, y ∈ [0; 1], | f(x) − f(y) | ≤ k |x − y |α

0 < α < 1 k > 0

B = {f ∈ L, ∥f∥ ≤ b}
b > 0

Φ[B] ⊂ B
⟹ ∃ Φ

Φ
∥Φ[ f1 − f2]∥ ≤ c∥f1 − f2∥

B
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Inelastic function
• In practice we don’t “choose” all of the .  

We choose a single function 


• The problem is complete: allowing any functions allows 
to describe any amplitude


• Hence, there is a sense in which this philosophy is 
actually geared towards bootstrap

T2→n
vinel(s, t) ∼ ∑n≥3 |T2→n |2

21



Atkinson’s program in 
2d (=1+1)

22



S-matrices in d=2

|S(s) | = 1, 4m2 ≤ s < s0

|S(s) | ≤ 1, s ≥ s0

S(s) = S(4m2 − s)

S(s) = 1 + i
T(s)

s(s − 4m2)

Elastic unitarity


Inelastic unitarity


Crossing

S(s)S*(s) = 1 − finel(s)

where finel(s) = 0, s < s0

23

Analyticity properties

Just one kinematic invariant: s, (t = 0), u = 4m2 − s .



|S(s) | = 1, 4m2 ≤ s < s0

|S(s) | ≤ 1, s ≥ s0

S(s) = S(4m2 − s)

S(s) = 1 + i
T(s)

s(s − 4m2)

Elastic unitarity


Inelastic unitarity


Crossing

S(s)S*(s) = 1 − finel(s)

In terms of T:

where finel(s) = 0, s < s0

24

s, (t = 0), u = 4m2 − s .

S-matrices in d=2



|S(s) | = 1, 4m2 ≤ s < s0

|S(s) | ≤ 1, s ≥ s0

S(s) = S(4m2 − s)
4m2

S(s) = 1 + i
T(s)

s(s − 4m2)

Elastic unitarity


Inelastic unitarity


Crossing

S(s)S*(s) = 1 − finel(s)

In terms of T:

where finel(s) = 0, s < s0
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S-matrices in d=2



|S(s) | = 1, 4m2 ≤ s < s0

|S(s) | ≤ 1, s ≥ s0

S(s) = S(4m2 − s)

S(s) = 1 + i
T(s)

s(s − 4m2)

Elastic unitarity


Inelastic unitarity


Crossing

S(s)S*(s) = 1 − finel(s)

ℑT(s) =
1

2 s(s − 4m2)
|T(s) |2 + vinel(s)

vinel(s) = finel(s) s(s − 4m2) /4

In terms of T:

where finel(s) = 0, s < s0

26

S-matrices in d=2



Our problem:

4m2

Given vinel, find T(s) that satisfies Mandelstam analyticity,

crossing, elastic unitarity and inelastic unitarity.

Will solve by:

1. searching fixed point of map  defined by


2. searching root of 

Φ

Ψ[ f ] = f − Φ[ f ]

Φ[ℑT(s)] =
1

2 s(s − 4m2)
|T(s) |2 + vi(s)

Note that  implicitly contains a step , given 

by a dispersion integral

Φ ℑT → ℜT

Fixed-point 

iteration

Newton method

27



Dispersion integral
Tn(s) = c∞ −

g2

s − m2
p

−
g2

4m2 − s − m2
p

+ ∫
∞

4m2

ds′ 

π
ℑTn(s′ )( 1

s′ − s
+

1
s′ − (4m2 − s) )

28

ℑT = ℑT(s + i0+)



Dispersion integral
ℜTn(s) = c∞ −

g2

s − m2
p

−
g2

4m2 − s − m2
p

+ P . V . ∫
∞

4m2

ds′ 

π
ℑTn(s′ )( 1

s′ − s
+

1
s′ − (4m2 − s) )

Problem: defined in this way, ℜTn(4m2) ≠ 0

⟹ ℑTn+1(s) →
s→4

∞

Φ[ℑT(s)] =
1

2 s(s − 4m2)
|T(s) |2 + vi(s)

which leads to a divergent dispersion integral at next step

29



Dispersion integral

• But we actually know the near-threshold behaviour of 
unitarity equations. Not hard to see that


 with 


• So we can force that  vanishes, by defining  
such that

ℑT(s) ∼s→4 (s − 4m2)k/2 k ≥ 1

ℜTn(4) g

ℜTn(4m2) = 0

= c∞ −
g2

n

s − m2
p

−
g2

n

4m2 − s − m2
p

+ P . V . ∫
∞

4m2

ds′ 

π
ℑTn(s′ )( 1

s′ − 4m2
+

1
s′ )

30



Our map

Input data:

• mass of the bound state 

• inelasticity 

• constant at infinity 

mp
vinel

c∞

31

Iterates:

• imaginary part of the amplitude 

on the cut



Analytic solution

32



Analytic solution

33

so, just to make sure that you don’t waste brain 
computing time being confused by this:


this is a new numerics method to solve a solved problem

is known already



= PPTvRV ‘16

34
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Analytic solution
• It turns out that in 2d, an exact solution can be written





•  is only defined by demanding 


• This introduces an ambiguity that played an important role in 
our analysis: given inelasticity, there is an infinite freedom to 
choose  

• Remark: a priori absent in 4d because no such purely elastic 
amplitudes should exist (Aks’ theorem)

S(s) = Selastic(s)e
∫∞

4m2
ds′ 
2πi log(1−fi(s′ )) s(s − 4m2)

s′ (s′ − 4m2) ( 1
s′ − s

+ 1
s′ − (4m2 − s) )

Selastic |Selastic | = 1

Selastic

PPTvRV ‘16
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Elastic S-matrices
• No particle production ⟶  integrable theories


• Spanned by CDD S-matrices

SCDD(s, m0) =
s(4m2 − s) ± m2

0(4m2 − m2
0)

s(4m2 − s) ∓ m2
0(4m2 − m2

0)

Selastic(s) = ∏
i

SCDD(s, mi)

+ : pole

-  : zero

36

(Castillejo-Dalitz-Dyson)

(See review by P Dorey) 
[hep-th/9810026]  

http://arxiv.org/abs/hep-th/9810026


Elastic S-matrices
Selastic(s) = ∏

i

SCDD(s, mi)

37

Selastic(s) = 1 + i
Telastic(s)

s(s − 4m2)



Elastic S-matrices

• The corresponding amplitudes  go to constants at infinity given by





• At fixed pole locations, many amplitudes can still have the same , by 
adjusting the number or position of the zeros.


• remark: zeros decreases the constant at infinity

Telastic(s)

lim
s→∞

Telastic(s) = c∞ = 2
Npoles

∑
j=1

m2
pj
(4m2 − m2

pj
) − 2

Nzeros

∑
j=1

m2
zj
(4m2 − m2

zj
)

c∞

Selastic(s) = ∏
i

SCDD(s, mi)

38

Selastic(s) = 1 + i
Telastic(s)

s(s − 4m2)



Results
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Numerical strategies

1. Fixed-point iteration


2. Newton’s method

xn+1 = f(xn)

xn+1 = xn −
g(xn)
g′ (xn)

g(x) = x − f(x)

40

remark: everything was done with Mathematica



Discretization

• Variable , grid x = 4/s ∈ [0,1] x0 = 0,…, xi, xN = 1

41



Interpolation

• Linear interpolant


• Bernstein polynomials 
interpolant


➝ discrete version of the 
dispersion integral:


ρ(x) = ρi−1 + (ρi − ρi−1)
x − xi−1

xi − xi−1
, xi−1 < x < xi

=
N

∑
j=1

Bi, jρj

∫
∞

4
ρ(s′ )( 1

s′ − 4/xi
+

1
s′ − (4 − 4/xi) ) ds′ →

N

∑
i=1

∫
xi

xi−1

ρ(s′ )( 1
s′ − 4/xi

+
1

s′ − (4 − 4/xi) ) ds′ 

PPTvRV ‘16

42

ρ(s) := ℑT(s) =



Interpolation
• Linear interpolant


• Bernstein polynomials 
interpolant


➝ discrete version of the 
dispersion integral:


ρ(x) = ρi−1 + (ρi − ρi−1)
x − xi−1

xi − xi−1
, xi−1 < x < xi

=
N

∑
j=1

Bi, jρj

∫
∞

4
ρ(s′ )( 1

s′ − 4/xi
+

1
s′ − (4 − 4/xi) ) ds′ →

N

∑
i=1

∫
xi

xi−1

ρ(s′ )( 1
s′ − 4/xi

+
1

s′ − (4 − 4/xi) ) ds′ 

PPTvRV ‘16
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ρ(s) := ℑT(s) =



Fixed-point iteration
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Fixed-point iteration

45

xn+1 = f(xn)



Fixed-point iteration

46

xn+1 = f(xn)

xn+1 =
1
2 (xn +

a
xn )

Babylonian scribes 
computing  (perhaps)2

Fowler, Robson 1998

The Babylonian method



Fixed-point iteration
1. Discretization 

2. Interpolation

3. Dispersion integral

4. Iteration

ℜTn,i = c∞ − g2
n ( 1

4/xi − m2
p

−
1

4/xi − (4 − m2
p) ) +

1
π

N−1

∑
j=1

Bijρn, j

ρn+1,i = Φ(ρn,j)i :=
xi

8 1 − xi
(ρ2

n,i + (Gij ⋅ ρn,j + qi)2) + vinel(xi)

g2
n = ( 1

4 − m2
p

−
1

m2
p )

−1
1
π ∑

j

BNjρn, j + c∞

Gn,ij = Bij −
P(xi)
P(1)

BNj, , qi = c∞ (1 −
P(xi)
P(1) ) ,

P(x) ≡
1

4/x − m2
p

−
1

4/x − (4 − m2
p)

47



Fixed-point iteration

48

1. Remark: In general, we want to find solutions of (1) without the n index. 

2. Whichever way that works is good. 

3. In the context of (1), what takes longest is to pre-compute the matrix   
(order of minutes to hours depending on grid size N)


4. The map, defined as it is, encodes everything : unitarity (elastic & inelastic),  
analyticity, and crossing.

Gi,j

Now, back to fixed-point iteration ρn+1 = Φ[ρn]

ρn+1,i = Φ(ρn,j)i :=
xi

8 1 − xi
(ρ2

n,i + (Gij ⋅ ρn,j + qi)2) + vinel(xi) (1)



Results: one-pole 
amplitudes

• Inputs: , , 


• Converge to 1-pole 1-zero 
amplitudes


• Independently of starting point 
(granted not too big)


• Ceases to converge when 
either inelasticity, or  
becomes too big.

c∞ vinel mp

c∞

49



Convergence of fixed-point: 
spectral radius

• Def: the spectral radius of a bounded linear operator is its maximal eigenvalue, in 
modulus.


• For a map , in a neighbourhood of a solution , you 
converge to a unique solution whenever the spectral radius of the Jacobian of the 
map  is smaller than one, |J|<1

Φ : ℝN ↦ ℝN ρ* = Φ[ρ*]

Jij = ∂iΦ[ρ*]/∂ρj

50

| f′ (x*) | < 1

| f′ (x*) | > 1

converges diverges

In 1d:

In N-d:



Divergence on 1-pole 3-zero
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one-zero and three-zero


have the same inputs as


far as the algorithm is 
concerned:


same , same pole and c∞
vinel = 0



Divergence on 1-pole 3-zero
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Divergence on 1-pole 3-zero
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Summary of fixed-point results

• Converges on n-pole n-zero amplitudes


• Diverges on n-pole m-zero amplitudes with n m 
• On 1-pole 1-zero amplitudes, we can fill almost all of 

function space, as represented by the coupling, except 
for a small band

≠
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e.v.’s at the maximal coupling

clearly above 1

54



Newton’s method
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Newton’s method
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xn+1 = xn −
g(xn)
g′ (xn)

g(x) = x − f(x)

"Oh, Diamond! Diamond! thou little knowest what mischief thou hast done!"

Newton-Raphson



Newton’s method
1. Discretization on the grid

2. Interpolation

3. Dispersion integral

4. Iteration ρn+1,i = ρn,i − (JΨ)−1 ⋅ (ρn − Φ(ρn))i

JΨ ⋅ (ρn+1,i − ρn,i) = ρn,i − Φ(ρn)i

matrix inversion: slow ⚠

way faster ✅
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Newton’s method

• When convergence stops, we observe that the Jacobian 
becomes singular.
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E.v.’s of the Newton’s 

method Jacobian at  
edge of convergence

Bernstein interpolants Piecewise-linear interpolants
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JΨ ⋅ (ρn+1,i − ρn,i) = ρn,i − Φ(ρn)i



Results
• Generic convergence in n-pole m-zero amplitudes. Much 

better than fixed-point.


• Extend the fixed-point range in 1-pole sector (1-zero), 
remains a finite strip where divergence.
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CDD fractal

60



Extended convergence

• Newton’s method converges on 1-pole n-zero sectors


• Given , many solutions are possible, distinguished by 
position of zeros


• How can the algorithm know what to converge to ?


• Depends on the starting point !

c∞
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Fractals in 1d
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Starting point in between different 
equally admissible CDD solutions

m2
z1

(4 − m2
z1

) + m2
z2

(4 − m2
z2

) + m2
z3

(4 − m2
z3

) = m2
z (4 − m2

z )

fλ(x) = (1 − λ)ℑT1−zero(x) + λℑT3−zero(x), λ ∈ [0; 1]
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fλ(x) = (1 − λ)ℑT1−zero(x, mp, mz) + λℑT3−zero(x, mp, mz1
, mz2

, mz3
), λ ∈ [0; 1]



Starting point in between different 
equally admissible CDD solutions

m2
z1

(4 − m2
z1

) + m2
z2

(4 − m2
z2

) + m2
z3

(4 − m2
z3

) = m2
z (4 − m2

z )
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fλ(x) = (1 − λ)ℑT1−zero(x) + λℑT3−zero(x), λ ∈ [0; 1]
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Position of first of the three zeros
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Romanesco broccoli fractal



Re[z1]

Im[z2]
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recap

• Atkinson’s program can be made to work.


• It’s the only proposal on the market to implement elastic 
unitarity.


• We’ve tested it on the simpler case of 2d S-matrices, so 
as to see how to proceed in 4d.

67

So, what have we learned ? Why are we doing this ? Where 
is this going ?



Summary
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Summary
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Essential for speed to be able to 
compute the matrix  in advanceGij

(if you want to construct only one 
amplitude, that may not be necessary, 
but to play games and explore function 
space, speed is necessary)

ρn+1,i = Φ(ρn,j)i :=
xi

8 1 − xi
(ρ2

ni
+ (Gij ⋅ ρn,j + qi)2) + vinel(xi)

compare with 

PPTvRV ’16:



Summary
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linear ≲︎︎ Berstein linear ≳ Berstein

Newton 
Ψ[ρ*] = ρ* − Φ[ρ*] = 0

Fixed-Point 
ρ* = Φ[ρ*]
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Open questions in 2d after 
this work

• Implement a method that can deal with singular 
Jacobians in Newton and fill the gray band


• Can one do a proof à la Atkinson’s here and how does it 
compare to our spectral radius analysis ?


• what else can you do with this formalism ? Other 2 to 2 S-
matrices ?
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Discussion, 
Future directions
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Add flavours

• In d=2 : add flavours (analytic solution with inelasticity 
unknown to our knowledge) and probe the O(N) monolith

[arXiv:1909.06495]  JHEP 2004 (2020) 142 
The O(N) S-matrix Monolith 
L. Cordova, Y. He, M. Kruczenski, P. Vieira

S(s) = Selastic(s)e
∫∞

4m2
ds′ 
2πi log(1−fi(s′ )) s(s − 4m2)

s′ (s′ − 4m2) ( 1
s′ − s

+ 1
s′ − (4m2 − s) )

73

analogue of 

not known

http://arxiv.org/abs/1909.06495
spires-open-journal://
spires-search://a%20cordova,%20lucia
spires-search://a%20he,%20yifei
spires-search://a%20kruczenski,%20martin
spires-search://a%20vieira,%20pedro


Relation to perturbative 
expansion

• What is the biggest difference between this and standard unitarity 
methods, and why does the map converge ? We know QFTs generically 
have a divergent loop expansion.


• Answer: all is within the assumed the inelastic input.


• if too big so that it mimics pure perturbative expansion, will diverge 
(cf Gribov’s theorem)


• Iterates much fewer graphs than Feynman graphs so you can resum 
(similar to eikonal resummation) 


• That can be seen as a problem, or as an advantage. We don’t have to 
worry about the issues of summability, and work directly in the space of 
full S-matrices. 
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Massless theories
• Can this be used for massless theories ? The separation 

 still holds there, (even 

though there isn’t elastic unitarity)


• In gravity, at high energies, black-holes are produced. Inelastic 
behaviour might be universal and easy to implement in 

ℑT(s) =
1

2 s(s − 4m2)
|T(s) |2 + vi(s)

vinel
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Other solvers
• Other numerical solving strategies ? After all we just want 

to solve a set of coupled non-linear equations. Could a 
neural-network solve faster and extend again the range of 
convergence in 2d ?
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ρi = Φ(ρj)i :=
xi

8 1 − xi
(ρ2

i + (Gij ⋅ ρj + qi)2) + vinel(xi)



Higher dimensions
• Last, but not least: higher dimensions. Challenges:


• s-grid ⟶ (s,t)-grid; N⟶N2 points.


• right-hand side of unitarity equations has a phase space 
integral. That’s an extra N2 integrals ☹.


• Many-layer recursion: for double-discontinuity and 
single-discontinuity. Add subtractions.


• Newton’s method Jacobian may be hard to compute 
numerically. Fixed-point will work.

77

Tourkine, Zhiboedov, work in progress



Higher dimensions
• For , two options:


• no explicit inelasticity, will be generated automatically by 
recursion + Aks theorem. What kind of amplitudes are 
those ? Sort of minimal analogues to integrable theories ?


• add inelasticity: what will it be ? Adapted from 
experimental data ?


• There shouldn’t be CDD ambiguity because of Aks theorem. 
If there is, it’s also very interesting because very new.

vinel

Tourkine, Zhiboedov, work in progress
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thanks for listening !
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Atkinson’s proof
• Start from the map  where  is a 

Banach space of Hölder continuous functions


• Hölder continuity : 
 

for  and 


• Define open ball  for 
some 


• If , Leray-Schauder principle
 fixed point of 


• If  is contracting, i.e. 
, then the solution 

is also unique in .

Φ : L ↦ L L

∀x, y ∈ [0; 1], | f(x) − f(y) | ≤ k |x − y |α

0 < α < 1 k > 0

B = {f ∈ L, ∥f∥ ≤ b}
b > 0

Φ[B] ⊂ B
⟹ ∃ Φ

Φ
∥Φ[ f1 − f2]∥ ≤ c∥f1 − f2∥

B
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